Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(1): e0244228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507977

RESUMO

The Central Siberian Plateau was the last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through a comprehensive dataset of mitochondrial DNA (mtDNA) genomes retained in the remnats of earlier ("Old") Siberians, primarily the Ket, Tofalar, and Todzhi, we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia (best represented by the Yukaghir) over the last 10,000 years. We generated 218 new complete mtDNA sequences and placed them into compound phylogenies with 7 newly obtained and 70 published ancient mitochondrial genomes. We have considerably extended the mtDNA sequence diversity (at the entire mtDNA genome level) of autochthonous Siberians, which remain poorly sampled, and these new data may have a broad impact on the study of human migration. We compared present-day mtDNA diversity in these groups with complete mitochondrial genomes from ancient samples from the region and placed the samples into combined genealogical trees. The resulting components were used to clarify the origins and expansion history of mtDNA lineages that evolved in the refugia of south-central Siberia and beyond, as well as multiple phases of connection between this region and distant parts of Eurasia.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , DNA Mitocondrial/história , Ligação Genética , Variação Genética , Haplótipos , História Antiga , Migração Humana , Humanos , Filogenia , Sibéria
2.
BMC Evol Biol ; 20(1): 83, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660486

RESUMO

BACKGROUND: We have described the diversity of complete mtDNA sequences from 'relic' groups of the Russian Far East, primarily the Nivkhi (who speak a language isolate with no clear relatedness to any others) and Oroki of Sakhalin, as well as the sedentary Koryak from Kamchatka and the Udegey of Primorye. Previous studies have shown that most of their traditional territory was dramatically reshaped by the expansion of Tungusic-speaking groups. RESULTS: Overall, 285 complete mitochondrial sequences were selected for phylogenetic analyses of published, revised and new mitogenomes. To highlight the likely role of Neolithic expansions in shaping the phylogeographical landscape of the Russian Far East, we focus on the major East Eurasian maternal lineages (Y1a, G1b, D4m2, D4e5, M7a2, and N9b) that are restricted to the coastal area. To obtain more insight into autochthonous populations, we removed from the phylogeographic analysis the G2a, G3a2, M8a1, M9a1, and C4b1 lineages, also found within our samples, likely resulting from admixture between the expanding proto-Tungus and the indigenous Paleoasiatic groups with whom they assimilated. Phylogenetic analysis reveals that unlike the relatively diverse lineage spectrum observed in the Amur estuary and northwestern Sakhalin, the present-day subpopulation on the northeastern coast of the island is relatively homogenous: a sole Y1a sublineage, conspicuous for its nodal mutation at m.16189 T > C!, includes different haplotypes. Sharing of the Y1a-m.16189 T > C! sublineages and haplotypes among the Nivkhi, Ulchi and sedentary Koryak is also evident. Aside from Y1a, the entire tree approach expands our understanding of the evolutionary history of haplogroups G1, D4m, N9b, and M7a2. Specifically, we identified the novel haplogroup N9b1 in Primorye, which implies a link between a component of the Udegey ancestry and the Hokkaido Jomon. CONCLUSIONS: Through a comprehensive dataset of mitochondrial genomes retained in autochthonous populations along the coast between Primorye and the Bering Strait, we considerably extended the sequence diversity of these populations to provide new features based on the number and timing of founding lineages. We emphasize the value of integrating genealogical information with genetic data for reconstructing the population history of indigenous groups dramatically impacted by twentieth century resettlement and social upheavals.


Assuntos
Povo Asiático/genética , Extinção Biológica , Genoma Mitocondrial , Grupos Populacionais/genética , Envelhecimento/genética , DNA Mitocondrial/genética , Genética Populacional , Geografia , Haplótipos/genética , Humanos , Ilhas , Filogenia , Filogeografia , Federação Russa
3.
Cells ; 8(12)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817256

RESUMO

Our data first represent the variety of Leber's hereditary optic neuropathy (LHON) mutations in Western Siberia. LHON is a disorder caused by pathogenic mutations in mitochondrial DNA (mtDNA), inherited maternally and presents mainly in young adults, predominantly males. Clinically, LHON manifests itself as painless central vision loss, resulting in early onset of disability. The epidemiology of LHON has not been fully investigated yet. In this study, we report 44 genetically unrelated families with LHON manifestation. We performed whole mtDNA genome sequencing and provided genealogical and molecular genetic data on mutations and haplogroup background of LHON patients. Known "primary" pathogenic mtDNA mutations (MITOMAP) were found in 32 families: m.11778G>A represents 53.10% (17/32), m.3460G>A-21.90% (7/32), m.14484T>C-18.75% (6/32), and rare m.10663T>C and m.3635G>A represent 6.25% (2/32). We describe potentially pathogenic m.4659G>A in one subject without known pathogenic mutations, and potentially pathogenic m.6261G>A, m.8412T>C, m.8551T>C, m.9444C>T, m.9921G>A, and m.15077G>A in families with known pathogenic mutations confirmed. We suppose these mutations could contribute to the pathogenesis of optic neuropathy development. Our results indicate that haplogroup affiliation and mutational spectrum of the Western Siberian LHON cohort substantially deviate from those of European populations.


Assuntos
DNA Mitocondrial/genética , Atrofia Óptica Hereditária de Leber/genética , Polimorfismo de Nucleotídeo Único , Adulto , Feminino , Humanos , Masculino , Mutação , Sibéria
4.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26595274

RESUMO

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Assuntos
Genoma Humano/genética , Seleção Genética/genética , Agricultura/história , Ásia/etnologia , Estatura/genética , Osso e Ossos , DNA/genética , DNA/isolamento & purificação , Dieta/história , Europa (Continente)/etnologia , Genética Populacional , Haplótipos/genética , História Antiga , Humanos , Imunidade/genética , Masculino , Herança Multifatorial/genética , Pigmentação/genética , Análise de Sequência de DNA
5.
Science ; 349(6253): aab3761, 2015 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-26249230

RESUMO

In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide-variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.


Assuntos
Variações do Número de Cópias de DNA , Evolução Molecular , Duplicação Gênica , Genoma Humano/genética , População/genética , Deleção de Sequência , Animais , População Negra/classificação , População Negra/genética , Hominidae/genética , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico/classificação , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética
6.
Eur J Hum Genet ; 23(10): 1399-404, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25564040

RESUMO

The patterns of prehistoric migrations across the Bering Land Bridge are far from being completely understood: there still exists a significant gap in our knowledge of the population history of former Beringia. Here, through comprehensive survey of mitochondrial DNA genomes retained in 'relic' populations, the Maritime Chukchi, Siberian Eskimos, and Commander Aleuts, we explore genetic contribution of prehistoric Siberians/Asians to northwestern Native Americans. Overall, 201 complete mitochondrial sequences (52 new and 149 published) were selected in the reconstruction of trees encompassing mtDNA lineages that are restricted to Coastal Chukotka and Alaska, the Canadian Arctic, Greenland, and the Aleutian chain. Phylogeography of the resulting mtDNA genomes (mitogenomes) considerably extends the range and intrinsic diversity of haplogroups (eg, A2a, A2b, D2a, and D4b1a2a1) that emerged and diversified in postglacial central Beringia, defining independent origins of Neo-Eskimos versus Paleo-Eskimos, Aleuts, and Tlingit (Na-Dene). Specifically, Neo-Eskimos, ancestral to modern Inuit, not only appear to be of the High Arctic origin but also to harbor Altai/Sayan-related ancestry. The occurrence of the haplogroup D2a1b haplotypes in Chukotka (Sireniki) introduces the possibility that the traces of Paleo-Eskimos have not been fully erased by spread of the Neo-Eskimos or their descendants. Our findings are consistent with the recurrent gene flow model of multiple streams of expansions to northern North America from northeastern Eurasia in late Pleistocene-early Holocene.


Assuntos
DNA Mitocondrial/genética , Variação Genética/genética , Genoma Mitocondrial/genética , Inuíte/genética , Polimorfismo de Nucleotídeo Único/genética , Alaska , Groenlândia , Haplótipos/genética , Migração Humana , Humanos , América do Norte , Filogeografia , Sibéria
7.
Nature ; 513(7518): 409-13, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25230663

RESUMO

We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.


Assuntos
Genoma Humano/genética , População Branca/classificação , População Branca/genética , Agricultura/história , Ásia/etnologia , Europa (Continente) , História Antiga , Humanos , Dinâmica Populacional , Análise de Componente Principal , Recursos Humanos
8.
Am J Phys Anthropol ; 148(1): 123-38, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22487888

RESUMO

To fill remaining gaps in mitochondrial DNA diversity in the least surveyed eastern and western flanks of Siberia, 391 mtDNA samples (144 Tubalar from Altai, 87 Even from northeastern Siberia, and 160 Ulchi from the Russian Far East) were characterized via high-resolution restriction fragment length polymorphism/single nucleotide polymorphisms analysis. The subhaplogroup structure was extended through complete sequencing of 67 mtDNA samples selected from these and other related native Siberians. Specifically, we have focused on the evolutionary histories of the derivatives of M and N haplogroups, putatively reflecting different phases of settling Siberia by early modern humans. Population history and phylogeography of the resulting mtDNA genomes, combined with those from previously published data sets, revealed a wide range of tribal- and region-specific mtDNA haplotypes that emerged or diversified in Siberia before or after the last glacial maximum, ∼18 kya. Spatial distribution and ages of the "east" and "west" Eurasian mtDNA haploclusters suggest that anatomically modern humans that originally colonized Altai derived from macrohaplogroup N and came from Southwest Asia around 38,000 years ago. The derivatives of macrohaplogroup M, which largely emerged or diversified within the Russian Far East, came along with subsequent migrations to West Siberia millennia later. The last glacial maximum played a critical role in the timing and character of the settlement of the Siberian subcontinent.


Assuntos
Genoma Mitocondrial , Indígenas Norte-Americanos/genética , População Branca/genética , Antropologia Física , Bases de Dados Genéticas , Emigração e Imigração , Haplótipos , Humanos , Inuíte/genética , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...